157 research outputs found

    Influence of interstellar and atmospheric extinction on light curves of eclipsing binaries

    Full text link
    Interstellar and atmospheric extinctions redden the observational photometric data and they should be handled rigorously. This paper simulates the effect of reddening for the modest case of two main sequence T1 = 6500K and T2 = 5500K components of a detached eclipsing binary system. It is shown that simply subtracting a constant from measured magnitudes (the approach often used in the field of eclipsing binaries) to account for reddening should be avoided. Simplified treatment of the reddening introduces systematics that reaches \~0.01mag for the simulated case, but can be as high as ~0.2mag for e.g. B8V--K4III systems. With rigorous treatment, it is possible to uniquely determine the color excess value E(B-V) from multi-color photometric light curves of eclipsing binaries.Comment: 6 pages, 9 figures, 1 table, Kopal's Binary Star Legacy conference contribution (Litomysl 2004), to be published by Kluwer A&S

    A search for ultra-compact dwarf galaxies in the NGC 1023 group of galaxies

    Full text link
    We present a photometric search for UCD candidates in the nearby galaxy group NGC 1023 (d=11 Mpc) -- the poorest environment searched for UCDs yet --, based on wide field imaging with CFHT. After photometric and morphological selection, we obtain a sample of 21 UCD candidates with -12<M_V<-11 mag, if located at NGC 1023's distance. From spectroscopy taken at Calar Alto observatory, we identify the UCD candidate in closest projection to NGC 1023 as an emission line background galaxy. Our photometric data show that in the NGC 1023 group, the mass spectrum of analogs to Fornax/Virgo UCD is restricted to about 1/4 of the maximum Fornax/Virgo UCD mass. More spectroscopy is needed to further constrain the mass range of UCDs in this galaxy group.Comment: 5 pages, 4 figures, to appear in the proceedings of ESO Astrophysics Symposia: "Groups of Galaxies in the Nearby Universe", eds. I. Saviane, V. Ivanov, J. Borissov

    The High Redshift Integrated Sachs-Wolfe Effect

    Full text link
    In this paper we rely on the quasar (QSO) catalog of the Sloan Digital Sky Survey Data Release Six (SDSS DR6) of about one million photometrically selected QSOs to compute the Integrated Sachs-Wolfe (ISW) effect at high redshift, aiming at constraining the behavior of the expansion rate and thus the behaviour of dark energy at those epochs. This unique sample significantly extends previous catalogs to higher redshifts while retaining high efficiency in the selection algorithm. We compute the auto-correlation function (ACF) of QSO number density from which we extract the bias and the stellar contamination. We then calculate the cross-correlation function (CCF) between QSO number density and Cosmic Microwave Background (CMB) temperature fluctuations in different subsamples: at high z>1.5 and low z<1.5 redshifts and for two different choices of QSO in a conservative and in a more speculative analysis. We find an overall evidence for a cross-correlation different from zero at the 2.7\sigma level, while this evidence drops to 1.5\sigma at z>1.5. We focus on the capabilities of the ISW to constrain the behaviour of the dark energy component at high redshift both in the \LambdaCDM and Early Dark Energy cosmologies, when the dark energy is substantially unconstrained by observations. At present, the inclusion of the ISW data results in a poor improvement compared to the obtained constraints from other cosmological datasets. We study the capabilities of future high-redshift QSO survey and find that the ISW signal can improve the constraints on the most important cosmological parameters derived from Planck CMB data, including the high redshift dark energy abundance, by a factor \sim 1.5.Comment: 20 pages, 18 figures, and 7 table

    Next-to-leading resummation of cosmological perturbations via the Lagrangian picture: 2-loop correction in real and redshift spaces

    Full text link
    We present an improved prediction of the nonlinear perturbation theory (PT) via the Lagrangian picture, which was originally proposed by Matsubara (2008). Based on the relations between the power spectrum in standard PT and that in Lagrangian PT, we derive analytic expressions for the power spectrum in Lagrangian PT up to 2-loop order in both real and redshift spaces. Comparing the improved prediction of Lagrangian PT with NN-body simulations in real space, we find that the 2-loop corrections can extend the valid range of wave numbers where we can predict the power spectrum within 1% accuracy by a factor of 1.0 (z=0.5z=0.5), 1.3 (1), 1.6 (2) and 1.8 (3) vied with 1-loop Lagrangian PT results. On the other hand, in all redshift ranges, the higher-order corrections are shown to be less significant on the two-point correlation functions around the baryon acoustic peak, because the 1-loop Lagrangian PT is already accurate enough to explain the nonlinearity on those scales in NN-body simulations.Comment: 18pages, 4 figure

    What fraction of stars formed in infrared galaxies at high redshift?

    Full text link
    Star formation happens in two types of environment: ultraviolet-bright starbursts (like 30 Doradus and HII galaxies at low redshift and Lyman-break galaxies at high redshift) and infrared-bright dust-enshrouded regions (which may be moderately star-forming like Orion in the Galaxy or extreme like the core of Arp 220). In this work I will estimate how many of the stars in the local Universe formed in each type of environment, using observations of star-forming galaxies at all redshifts at different wavelengths and of the evolution of the field galaxy population.Comment: 7 pages, 0 figs, to appear in proceedings of "Starbursts - From 30 Doradus to Lyman break galaxies", edited by Richard de Grijs and Rosa M. Gonzalez Delgado, published by Kluwe

    Distribution function approach to redshift space distortions. Part II: N-body simulations

    Full text link
    Measurement of redshift-space distortions (RSD) offers an attractive method to directly probe the cosmic growth history of density perturbations. A distribution function approach where RSD can be written as a sum over density weighted velocity moment correlators has recently been developed. We use Nbody simulations to investigate the individual contributions and convergence of this expansion for dark matter. If the series is expanded as a function of powers of mu, cosine of the angle between the Fourier mode and line of sight, there are a finite number of terms contributing at each order. We present these terms and investigate their contribution to the total as a function of wavevector k. For mu^2 the correlation between density and momentum dominates on large scales. Higher order corrections, which act as a Finger-of-God (FoG) term, contribute 1% at k~0.015h/Mpc, 10% at k~0.05h/Mpc at z=0, while for k>0.15h/Mpc they dominate and make the total negative. These higher order terms are dominated by density-energy density correlations which contribute negatively to the power, while the contribution from vorticity part of momentum density auto-correlation is an order of magnitude lower. For mu^4 term the dominant term on large scales is the scalar part of momentum density auto-correlation, while higher order terms dominate for k>0.15h/Mpc. For mu^6 and mu^8 we find it has very little power for k<0.15h/Mpc. We also compare the expansion to the full 2D P^ss(k,mu) as well as to their multipoles. For these statistics an infinite number of terms contribute and we find that the expansion achieves percent level accuracy for kmu<0.15h/Mpc at 6th order, but breaks down on smaller scales because the series is no longer perturbative. We explore resummation of the terms into FoG kernels, which extend the convergence up to a factor of 2 in scale. We find that the FoG kernels are approximately Lorentzian.Comment: 21 pages, 9 figures, published in JCA

    Crystal structure of the dynamin tetramer

    Get PDF
    The mechanochemical protein dynamin is the prototype of the dynamin superfamily of large GTPases, which shape and remodel membranes in diverse cellular processes. Dynamin forms predominantly tetramers in the cytosol, which oligomerize at the neck of clathrin-coated vesicles to mediate constriction and subsequent scission of the membrane. Previous studies have described the architecture of dynamin dimers, but the molecular determinants for dynamin assembly and its regulation have remained unclear. Here we present the crystal structure of the human dynamin tetramer in the nucleotide-free state. Combining structural data with mutational studies, oligomerization measurements and Markov state models of molecular dynamics simulations, we suggest a mechanism by which oligomerization of dynamin is linked to the release of intramolecular autoinhibitory interactions. We elucidate how mutations that interfere with tetramer formation and autoinhibition can lead to the congenital muscle disorders Charcot-Marie-Tooth neuropathy and centronuclear myopathy, respectively. Notably, the bent shape of the tetramer explains how dynamin assembles into a right-handed helical oligomer of defined diameter, which has direct implications for its function in membrane constriction

    Measuring proper motions of isolated neutron stars with Chandra

    Get PDF
    The excellent spatial resolution of the Chandra observatory offers the unprecedented possibility to measure proper motions at X-ray wavelength with relatively high accuracy using as reference the background of extragalactic or remote galactic X-ray sources. We took advantage of this capability to constrain the proper motion of RX J0806.4-4123 and RX J0420.0-5022, two X-ray bright and radio quiet isolated neutron stars (INSs) discovered by ROSAT and lacking an optical counterpart. In this paper, we present results from a preliminary analysis from which we derive 2 sigma upper limits of 76 mas/yr and 138 mas/yr on the proper motions of RX J0806.4-4123 and RX J0420.0-5022 respectively. We use these values together with those of other ROSAT discovered INSs to constrain the origin, distance and evolutionary status of this particular group of objects. We find that the tangential velocities of radio quiet ROSAT neutron stars are probably consistent with those of 'normal' pulsars. Their distribution on the sky and, for those having accurate proper motion vectors, their possible birth places, all point to a local population, probably created in the part of the Gould Belt nearest to the earth.Comment: 8 pages, 3 figures, to appear in Astrophysics and Space Science, in the proceedings of "Isolated Neutron Stars: from the Interior to the Surface", edited by D. Page, R. Turolla and S. Zan

    Optimal limits on f_{NL}^{local} from WMAP 5-year data

    Full text link
    We have applied the optimal estimator for f_{NL}^{local} to the 5 year WMAP data. Marginalizing over the amplitude of foreground templates we get -4 < f_{NL}^{local} < 80 at 95% CL. Error bars of previous (sub-optimal) analyses are roughly 40% larger than these. The probability that a Gaussian simulation, analyzed using our estimator, gives a result larger in magnitude than the one we find is 7%. Our pipeline gives consistent results when applied to the three and five year WMAP data releases and agrees well with the results from our own sub-optimal pipeline. We find no evidence of any residual foreground contamination.Comment: [v1] 21 pages, 7 figures. [v2] minor changes matching published versio

    Constraints on cosmic hemispherical power anomalies from quasars

    Get PDF
    Recent analyses of the cosmic microwave background (CMB) maps from the WMAP satellite have uncovered evidence for a hemispherical power anomaly, i.e. a dipole modulation of the CMB power spectrum at large angular scales with an amplitude of +/-14 percent. Erickcek et al have put forward an inflationary model to explain this anomaly. Their scenario is a variation on the curvaton scenario in which the curvaton possesses a large-scale spatial gradient that modulates the amplitude of CMB fluctuations. We show that this scenario would also lead to a spatial gradient in the amplitude of perturbations sigma_8, and hence to a dipole asymmetry in any highly biased tracer of the underlying density field. Using the high-redshift quasars from the Sloan Digital Sky Survey, we find an upper limit on such a gradient of |nabla sigma_8|/sigma_8<0.027/r_{lss} (99% posterior probability), where r_{lss} is the comoving distance to the last-scattering surface. This rules out the simplest version of the curvaton spatial gradient scenario.Comment: matches JCAP accepted version (minor revisions
    corecore